

NEC's NPN SiGe HIGH FREQUENCY TRANSISTOR

NESG3031M14

FEATURES

LOW NOISE FIGURE AND HIGH-GAIN

 $NF = 0.95 \, dB \, TYP, \, Ga = 10 \, dB \, TYP \, @ \, VCE = 2 \, V, \, IC = 6 \, mA, \, f = 5.2 \, GHz$ $NF = 1.1 \, dB \, TYP, \, Ga = 9.5 \, dB \, TYP \, @ \, VCE = 2 \, V, \, IC = 6 \, mA, \, f = 5.8 \, GHz$

MAXIMUM STABLE POWER GAIN:

MSG = 15.0 dB TYP @ VCE = 3 V, IC = 20 mA, f = 5.8 GHz

• SiGe HBT TECHNOLOGY:

USH3 process, fmax = 110 GHz

M14 PACKAGE:

4-pin lead-less minimold package

ORDERING INFORMATION

PART NUMBER	QUANTITY	SUPPLYING FORM
NESG3031M14	50 pcs (Non reel)	8 mm wide embossed taping
NESG3031M14-T3	10 kpcs/reel	Pin 1 (Collector), Pin 4 (Emitter) face the perforation side of the tape

Remark To order evaluation samples, contact your nearby sales office. Unit sample quantity is 50 pcs.

ABSOLUTE MAXIMUM RATINGS (TA =+25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Collector to Base Voltage	Vсво	12.0	V
Collector to Emitter Voltage	Vceo	4.3	V
Emitter to Base Voltage	VEBO	1.5	V
Collector Current	lc	35	mA
Total Power Dissipation	P _{tot} Note	150	mW
Junction Temperature	Tj	150	°C
Storage Temperature	Tstg	-65 to +150	°C

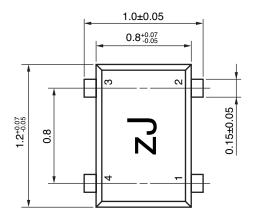
Note Mounted on 1.08 cm² × 1.0 mm, (t) glass epoxy PCB

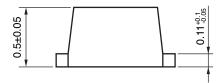
NESG3031M14

ELECTRICAL CHARACHTERISTICS (TA = 25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
DC Characteristics							
Collector Cut-off Current	Ісво	VcB = 5 V, IE = 0 mA	-	_	100	nA	
Emitter Cut-off Current	Ієво	V _{EB} = 1 V, I _C = 0 mA	-	-	100	nA	
DC Current Gain	hre Note 1	Vce = 2 V, Ic = 6 mA	220	300	380	-	
RF Characteristics							
Insertion Power Gain	S _{21e} ²	VcE = 3 V, Ic = 20 mA, f = 5.8 GHz	6.5	9.0	-	dB	
Noise Figure (1)	NF	VcE = 2 V, Ic = 6 mA, f = 5.2 GHz,	-	0.95	-	dB	
		$Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$					
Noise Figure (2)	NF	$V_{CE} = 2 \text{ V}, \text{ Ic} = 6 \text{ mA}, \text{ f} = 5.8 \text{ GHz},$	_	1.1	1.5	dB	
		$Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$					
Associated Gain (1)	Ga	Vce = 2 V, Ic = 6 mA, f = 5.2 GHz,	-	10.0	-	dB	
		$Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$					
Associated Gain (2)	Ga	Vce = 2 V, Ic = 6 mA, f = 5.8 GHz,	7.5	9.5	-	dB	
		$Z_S = Z_{Sopt}, Z_L = Z_{Lopt}$					
Reverse Transfer Capacitance	Cre Note 2	VcB = 2 V, IE = 0 mA, f = 1 MHz	-	0.15	0.25	pF	
Maximum Stable Power Gain	MSG ^{Note 3}	VcE = 3 V, Ic = 20 mA, f = 5.8 GHz	12.0	15.0	-	dB	
Gain 1 dB Compression Output	Po (1 dB)	Vce = 3 V, Ic (set) = 20 mA,	_	13.0	-	dBm	
Power		f = 5.8 GHz, Zs = Zsopt, ZL = ZLopt					
3rd Order Intermodulation	OIP3	Vce = 3 V, Ic (set) = 20 mA,	-	18.0	-	dBm	
Distortion Output Intercept Point		f = 5.8 GHz, Zs = Zsopt, ZL = ZLopt					

Notes 1. Pulse measurement: PW $\leq 350~\mu s,$ Duty Cycle $\leq 2\%$


2. Collector to base capacitance when the emitter grounded


3. MSG =
$$\left| \frac{S_{21}}{S_{12}} \right|$$

hfe CLASSIFICATION

RANK	FB		
Marking	zJ		
hre Value	220 to 380		

4-PIN LEAD-LESS MINIMOLD (M14, 1208 PACKAGE)

PIN CONNECTIONS

- 1. Collector
- 2. Emitter
- 3. Base
- 4. Emitter

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

California Eastern Laboratories, Your source for NEC RF, Microwave, Optoelectronic, and Fiber Optic Semiconductor Devices.
4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • FAX (408) 988-0279 • www.cel.com

DATA SUBJECT TO CHANGE WITHOUT NOTICE

